linear adj. 1.線的,直線的。 2.長度的。 3.【數(shù)學(xué)】一次的,線性的。 4.【動、植】線狀的;細(xì)長的。 5.由線條組成的,以線條為主的,強(qiáng)調(diào)線條的。 linear amplification 直線放大。 a linear equation 一次方程式。 a linear leaf 線形葉。 linear arts 線條藝術(shù)。
element n. 1.要素;成分;(構(gòu)成)部分;分子。 2.【化學(xué)】元素;【數(shù)學(xué)】元,素;【機(jī)械工程】單元;單體;【無線電】元件;【植物;植物學(xué)】原種。 3.【電學(xué)】電池;電極;電阻絲。 4.生存環(huán)境,活動范圍;本行,本領(lǐng)。 5.〔pl.〕原理;初步;大綱。 6.〔pl.〕自然力;暴風(fēng)雨。 7.【軍事】小隊,分隊。 8.〔pl.〕【宗教】(圣餐用)面包和葡萄酒。 the four elements (古希臘哲學(xué)家認(rèn)為組成世界的地、水、火、風(fēng))四元素。 discontented elements 不平分子。 daughter element 【物理學(xué)】子元素。 control element 控制元件。 the elements of grammer 語法基礎(chǔ)。 in one's element 在自己(活動)天地內(nèi),如魚得水。 out of one's element 在自己活動天地外,不得其所,格格不入。 strife [war] of the elements 暴風(fēng)雨。
Roof covering . aluminium or aluminium - alloy shaped linear elements 屋頂.鋁或鋁合金制線狀型材
Superconvergence analysis of linear element in 3 - d on anisotropic meshes 各向異性網(wǎng)格下三維線性元的超收斂性分析
Based on the equation of general frequency response functions ( gfrf ) of the non - linear dynamic systems , in this paper , the difference is applied to detect the non - linear element positions in a complex structure 本文在研究非線性系統(tǒng)廣義頻率響應(yīng)函數(shù)表達(dá)式的基礎(chǔ)上,導(dǎo)出一種適用于復(fù)雜結(jié)構(gòu)中非線性元件位置分布的判斷方法。
Then bar element ' s tangential stiffness matrixes are deduced , which is based on the finite element method . the geometrical nonlinearity and material nonlinearity are both considered in the non - linear element stiffness matrix 利用有限元方法,對網(wǎng)殼結(jié)構(gòu)進(jìn)行了幾何和材料非線性分析研究,推導(dǎo)了空間鉸接桿單元的幾何和材料非線性的剛度矩陣。
In this paper , the boundary problem of laplace equation is changed into the variational equation which is equivalent to the boundary integral equation . using linear element , it is solved by galerkin boundary element method 本文把laplace方程的邊值問題轉(zhuǎn)化為邊界積分方程后,通過與邊界積分方程等價的變分形式,采用線性單元,利用galerkin邊界元方法求解。
On the base of energy principle and by developping the linear elements and the nonlinear ones , let the students master the basic concepts and the procedure of the spatial dome structures ' design , and also their mechanical characteristics and application areas 通過基于能量原理對線性單元和非線性單元的比較和簡單推導(dǎo),讓學(xué)生掌握網(wǎng)殼結(jié)構(gòu)的穩(wěn)定分析的基本概念和設(shè)計過程,并了解網(wǎng)殼結(jié)構(gòu)的特殊性和結(jié)構(gòu)受力特性及應(yīng)用范圍。
The paper , in the way of math morphology , manages to classify the linear elements , the same type but different width in the scanning , and result in the two - valued linear image in the same level . in the fine division of the target image , a way of math morphology based on the double structure of cell stencil is put forward , which prevents the terminals and the acnodes from losing and also reduces effectively time in doing so . as the result of the framework of the fine division , vector method is formed in which its track is monitored by using dynamic change of pace about freeman ' s chain code 本文用數(shù)學(xué)形態(tài)學(xué)相關(guān)理論方法實現(xiàn)了對掃描圖像中具有同一線型但不同線寬的線狀要素進(jìn)行分類,在同一層上得到同一線寬的二值線狀要素圖;在對此目標(biāo)圖像進(jìn)行細(xì)化時,提出了基于雙結(jié)構(gòu)單元模板的數(shù)學(xué)形態(tài)學(xué)細(xì)化算法,用該算法對實際的線狀要素進(jìn)行細(xì)化,避免了端點、孤立點等信息的丟失,且由于是并行處理,有效地提高細(xì)化速度;對于細(xì)化后的骨架線,提出了基于freeman鏈碼的動態(tài)改變步長保持精度跟蹤矢量化方法。
As far as the nonstationarity during the long period operation of machinery was concerned , the application of adaptive linear element ( adaline ) neural network to prediction of nonstationary time series was studied . the relationship between adaline and auto regressive ( ar ) model was analyzed , and the method to determine the number of input neurons in adaline prediction model according to bic criteria was presented . the effect of the adaptive learning rate on prediction was also analyzed 針對生產(chǎn)實踐中設(shè)備運行的非平穩(wěn)性,基于動態(tài)預(yù)測思想,研究了非平穩(wěn)時間序列的自適應(yīng)線性單元( adaline )神經(jīng)網(wǎng)絡(luò)預(yù)測,討論了adaline和自回歸( ar )模型之間的關(guān)系,提出根據(jù)ar模型定階方法確定adaline預(yù)測模型的輸入神經(jīng)元數(shù)目,分析了自適應(yīng)學(xué)習(xí)率對預(yù)測性能的影響,為機(jī)械設(shè)備狀態(tài)預(yù)測提供了一種方法。
百科解釋
In an electric circuit, a linear element is an electrical element with a linear relationship between current and output voltage. Resistors are the most common example of a linear element; other examples include capacitors, inductors, and transformers.